
Basics of Writing and Running Python Code

Jason D. Josephson | Last update: January 16, 2024

This short document will just cover the very basics of what you need to get started
writing and running Python code. No programming experience is assumed. The upshot is
you’ll need some program to write the code and some program to execute it. I recommend
reading the whole document first before installing anything.

Writing code: text editors

Python code is saved in files with the .py file extension. No special software is needed
to write these files. You can write them in basic text editors, e.g., Notepad on Windows
or TextEdit on Mac, and simply save the file as a .py file instead of a .txt file. This
means that the program used to write .py files can have nothing to do with executing
the code (or even with the Python language as such).

Now, although you can use such simple text editors, it will probably be more convenient
to use a more advanced writing environment. I will use the Notepad++ text editor to
illustrate a few of these, but we will then list a few other text editors. Notepad++ is a
free text editor aimed at maintaining the simplicity of Notepad while still including simple
features that are very useful for programming. Unfortunately, it only works on Windows.

Syntax highlighting: terms in the code are displayed in different colours based on what
they do. Compare Figures 1 and 2, which show the same code.

Figure 1: Python file opened in Notepad.



Figure 2: Syntax highlighting in Notepad++.

Tab completion: when typing a term already used, pressing the Tab key will automat-
ically complete the rest of the term (Figure 3).

Figure 3: Tab completion in Notepad++.

Code folding: clicking an icon hides a section of code (without altering the code itself),
making scrolling through large files quicker (Figure 4).

2



Figure 4: Code folding in Notepad++. TOP: All classes and functions (blocks of code
under lines starting with class and def, respectively) have been “folded” and are not
visible. BOTTOM: Last function has been unfolded and is now visible in its entirety.

If you just want to keep things simple, Notepad++ is a good choice. If you’re interested
in more features, there are a number of other editors you may like.

Visual Studio Code (VS Code) is a famous, free code editor which is made by
Microsoft which can be customized by installing extensions of which there are a wide
variety. For instance, there is a feature which is not in Notepad++ called code “linting”
in which the editor identifies some types of errors in your code (Figure 5). (Obviously
this depends on the language you’re using.) This is obviously very useful, and it can be
easily added by installing the “Python” extension. We will see how VS Code can be used
to also execute code soon.

3



Figure 5: Code linting in VS Code with the Python extension. TOP: Errors in the code
are underlined with a red squiggle, and the extra right parenthesis “)” is coloured red.
BOTTOM: Upon fixing the errors, the red squiggles disappear and all parentheses are
in yellow.

Pulsar is a new, free text editor which has a selection of community-made packages;
simply go to Settings>Install and search for the package you want. Linting doesn’t come
with Pulsar upon installation, but linting packages specific to Python can be installed.
Pulsar is basically a successor to a major text editor called Atom. In 2022 Atom was
“sunset” (blame Microsoft); it and its packages have been archived online but are not
actively updated, so it’s more convenient to get Pulsar.

Sublime is an editor with a reputation for being high-quality, as far as I’m aware,
though I’ve never used it myself since it is proprietary; at the time of writing it was
99 USD (= 132 CAD) for an individual licence. I don’t recommend paying until you’re
confident that you’ve gotten your feet wet and know this is something you want to invest
in.

These are just a few editors. A more comprehensive list is here on the official Python
Software Foundation website.

Executing code: interpreters

The code you’ve written gives the computer instructions to do something. How will you
make the computer do it? Python is a “high-level” programming language: its concepts are
abstract and don’t make reference to the operations directly performed by the computer
hardware. The computer itself understands “low-level” 1s and 0s; it doesn’t know how to
read Python. Thus you need a program to actually make the computer do what you’ve
written, i.e., to execute/run the code.

Again, a programming language is something theoretical, a set of rules. The actual
programs which “speak” the language, that is, programs which can turn written code into
a real series of actions taken by the computer, are called implementations. Different
implementations will work in different ways; ideally, all will adhere to the abstract rules
of the language, but some may have faster speed or be designed for specific types of
computer, etc. Another important term here is code compilation. A compiler translates
code from one language to another. This could be a translation from a human-readable
language into “machine code” consisting of 1s and 0s. A final term is the interpreter, a
program which executes code that is not in machine language.

The most popular implementation of Python can be found at the official (i.e., owned

4

https://en.wikipedia.org/wiki/Sunset_(computing)
https://wiki.python.org/moin/PythonEditors
https://wiki.python.org/moin/PythonEditors


by the Python Software Foundation) website, python.org. This implementation is called
CPython. In it, written Python code (the source code) is first compiled into bytecode.
Bytecode is lower-level than Python but higher level than machine code. The bytecode
is then executed by an interpreter. (Figure 6, Top)

Luckily for us, all of this compilation and interpretation goes on behind the scenes.
Once you’ve downloaded the implementation, you’ll be able to run your code simply by
pressing Enter, and the interpreter will do its magic. (Figure 6, Bottom)

Figure 6: Execution of Python code with the CPython implementation. TOP: Simplified
scheme of source code compilation and interpretation. If this interests you, read these
deeper explanations by Ayan Das and Obi Ike-Nwosu—although you may want to book-
mark them and return when you’ve learned more about Python and computer science.
BOTTOM: Normally, the user simply experiences the Python interpreter as a black box.
Diagrams made in MS PowerPoint.

NOTE: Python version number is important, since different versions may not be com-
patible. Code written for one version may not work with another, and this is true not
only of Python itself but also any code modules/libraries used in a script. This goes
especially for the transition from Python 2 to Python 3, which are so different that you
should not be using Python 2 at all, unless for some reason you have to work with some
old code written for Python 2. Some Windows and Mac systems come with Python 2.7
pre-installed, so be sure to install a new version.

5

https://www.python.org/download
https://ayandas.me/blog-tut/2019/01/01/python-compilation-process-overview.html
https://leanpub.com/insidethepythonvirtualmachine/read


Once you’ve installed your Python implementation, you’ll want to use a terminal, some
variant of which will be available on Windows, Mac, or Linux systems. On Windows, you
can search for Windows PowerShell or install the Terminal app from the Microsoft Store.
On Mac, you can use the Terminal app. For Linux, Ctrl+Alt+T should open the Terminal
app. This webpage at realpython.com goes over basic terminal commands. The name of
the directory (the folder) you’re currently in will be displayed in the terminal; by typing
cd followed by the name of a folder, you can change your current directory to that folder
(Figure 7). When specifying folders, one period (.) refers to the current directory, while
two (..) refers to the parent directory of the current directory. So, e.g., suppose you have
a folder parentFolder which has two sub-folders: childFolder1 and childFolder2. If
your current directory is C:\parentFolder\childFolder1, to change directories to the
other sub-folder, use cd ..\childFolder2; or, to change directories to the parent folder,
just use cd ... You can also use tab completion, i.e., you can hit the Tab key to auto-
complete partially-typed file/folder names. Pressing the up/down arrow keys also allows
you to go through commands you’ve used before.

Figure 7: Windows PowerShell used in the Terminal app. After the introductory message,
“PS” (PowerShell) is displayed, followed by the path of the current directory. In the exam-
ple shown, the commands used are: cd / brings us to the root directory (the C:\ drive).
From there, cd ComputationalChemistry goes to the ComputationalChemistry folder
in its parent C:\ directory. pwd (print working directory) prints the current working di-
rectory, which is indeed C:\ComputationalChemistry. Finally, ls is used to list the files
and folders within the current directory.

Once you’re in the directory containing your python.exe application, you can simply
type python to run the program. To avoid the need to be in this directory, you can add
this directory to your system’s PATH environment variable. When you run a program,
the PATH variable contains a list of directories that will be searched for the program in
addition to your current directory. During installation of Python, there should be a check
box prompting you to add Python to the PATH. But you can add/remove programs from
the PATH at any time; see, for instance, realpython.com’s tutorial. Once this is done,
you should be able to run python.exe by typing python in the terminal, regardless of
what directory you’re in.

If you type python followed by a .py filename, the code in the entire .py file will

6

https://realpython.com/terminal-commands/
https://realpython.com/add-python-to-path/


be executed. Note that if the .py file is in your current working directory, you only
need to type the filename; but if the file is elsewhere, you’ll need to type the filepath
relative to your current directory. Think of the relative filepath like a map from your
current directory to the file (see Figure 8). Normally, it’s convenient to set your working
directory to the folder containing the .py file(s) you’re working with.

Figure 8: Use of terminal (PowerShell in Terminal app) to run a sample Python script,
pythonFile.py, which simply prints the number 0 when run. TOP: Tree diagram of
directories used in this example, including test folder as the location of pythonFile.py.
Diagram generated using https://tree.nathanfriend.io/. BOTTOM: When the cur-
rent working directory is test, the filename pythonFile.py can simply be given. After
using cd .. to change directory to the parent directory, ComputationalChemistry, us-
ing pythonFile.py no longer works, giving an error. Instead, the filepath relative to the
current directory must be given, in this case, the test folder followed by the filename.
Again, after changing to the directory test2, which doesn’t contain the file, simply using
the filename will not work. Instead, the relative filepath now becomes .. (the parent
directory, i.e., ComputationalChemistry) followed by test and the filename.

If you simply type python without giving a filename, this will allow you to use the
Python interpreter interactively. You should also be able to access this mode by clicking
on the python.exe application directly from your file manager/explorer. This interactive
mode is called read-evaluate-print-loop: REPL. Instead of running a whole file of code
at once, short bits of code are typed, the Enter key is pressed to execute the code, the
output is returned, repeat. This can be much more convenient then having to create and
run a file every time one wants to run any snippet of code.

There are a few tricks to using the REPL that come in handy. (1) Type help(x)
to get information about some object x (Figure 9). (2) Like in the terminal, you can
use the up/down arrow keys to access previously used lines of code. (3) You can use
tab completion. (4) An underscore “_” acts as a variable for the most recent output of
the REPL. (Figure 10). (5) Pressing Ctrl+C (Cmd+C for Mac) while the interpreter is
executing code will halt the execution; this can be important if you accidentally make

7

https://tree.nathanfriend.io/


code that loops forever or takes unreasonably long.

Figure 9: Use of the help() function in the REPL to provide information about an object,
in this case the print() function.

Figure 10: Use of an underscore in the REPL. After evaluating the expression 2+2 as 4,
4 is assigned to the underscore automatically, and the underscore can be used in place of
4 in the next expression.

Another Python interpreter, which I definitely recommend for interactive/REPL use
over the one just shown, is IPython (Interactive Python). Using IPython works es-
sentially the same way but with some useful added features that don’t make things too
complex. You should be able to install IPython using the “pip” program. pip should
have come with your Python installation; go to the folder containing python.exe and
look for the Scripts folder; pip should be in here. To use pip from the terminal, either
navigate into this folder or add this folder to the PATH environment variable (vide supra).
Then use the command pip install ipython, and after installation IPython should be
accessible from the terminal.

We will go over a number of distinguishing features of IPython. (1) It uses syntax
highlighting. (2) Input code and output results are labelled with numbers in green and
red on the left side of the line. The underscore functionality of the prior interpreter is
also present, and two (__) or three (___) underscores act as variables for the second and
third most recent outputs. Beyond this, any output of the current session can be accessed
with “_n”, where n is the output number. (3) In addition to the help() feature, using
a question mark after an object gives information about it. For functions, in particular,
placing one question mark prints a short description, while two question marks prints the
code of the entire function. (4) Ctrl+S allows you to search for a former input containing
whatever you type; use the up/down keys to scroll through, and press Escape to exit the
mode. (5) Ctrl+A brings your cursor to the far left of the line. (6) If you use Ctrl+C

8



while writing (as opposed to using it to interrupt execution), your current writing will be
erased.

In addition to these, there are IPython “magic” commands. These start with a per-
centage sign. When the %run command is followed by the name of a Python file, that file
is executed within the interactive session. Using %timeit followed by a code expression
makes IPython run the code multiple times, returning the mean and standard deviation
of how long the code took to execute. %who and %whos followed by one or more types of
object gives a list of all such objects that have been defined by the user manually; the
latter gives more info than the former. Using %cpaste begins a mode in which you can
use Ctrl+V or a right mouse click to paste code.

Figure 11: IPython interpreter displaying syntax highlighting and magic commands. Note
that when %whos is not given any object type, it lists all manually defined variables.

A useful feature is the ability to log sessions. To begin logging, use %logstart followed
by a filename in which your commands will be recorded. Use %logstart -o and then the
filename to include the outputs in the log. See the link in the former paragraph for more
options. Use %logstop to stop logging.

Now that we’ve covered text editors and Python interpreters, it’s good to note that
some programs, like VS Code, incorporate the use of a terminal directly into the editor.
VS Code is elaborate enough that it’s not merely a text editor but rather a “code editor” or
“integrated development environment” (IDE). Both the editor and the interpreter can be
integrated into a single window (Figure 12), along with the other features and extensions
VS Code offers.

9

https://ipython.readthedocs.io/en/stable/interactive/magics.html#line-magics


Figure 12: PowerShell terminal integrated into the VS Code editor. The file example.py,
visible above, is run, printing out the numbers seen in the terminal below.

On this note, another IDE is Spyder. Spyder has multiple panels in a single window
for editing Python files, using an IPython terminal, and displaying information, graphs,
etc. As in VS Code, code linting is built in and tools are available for debugging the code.

Figure 13: Spyder IDE. The graph produced by the file in the left panel and run in the
IPython terminal (bottom right) can be viewed in the top right panel.

Virtual environments

It is often helpful to make use of virtual environments. Python has a large number
of packages and libraries; these are so numerous and so useful that you will use some in
almost every project. But for some scripts/projects, you may wish to use a particular set of
packages. Perhaps for one old script you need to use an old version of a package, while for
another you need a newer version (which would, if installed, overwrite the old version).
Two different packages might also conflict with each other, unbeknownst to you, since
packages often depend on other packages (their “dependencies”). Also, you may want to
keep everything neat and tidy, with a project having a discrete compartment containing

10



only the packages it needs. This allows you to easily keep track of what packages are
needed for what project, especially important when sharing the project.

A virtual environment contains a Python interpreter along with various packages and
libraries. When operating inside the virtual environment, this specific interpreter is used,
and only the packages inside the environment are available. Any packages installed with
pip while in the virtual environment are installed within the environment only and aren’t
accessible while in other environments.

Creating an environment can be done on Windows or Linux with the command python
-m venv folder where folder is the folder (or path to the folder) of the new virtual en-
vironment. A new interpreter (python.exe), pip, and various other files will be created
in this folder. In order to work within the virtual environment, the environment’s folder
doesn’t have to be your working directory in the terminal; in fact, the official venv docu-
mentation says that you “don’t place any project code in the environment.” Rather, you
will “activate” the virtual environment, and as long as you don’t deactivate it, the python
command will run the environment’s interpreter and only use the environment’s packages.
To activate an environment, you need to run a script which is automatically created in
the Scripts (or bin on Linux) folder of that virtual environment’s folder (see Figure 14).
For Windows or Linux, see the commands listed here. Note that if using PowerShell, you
may need to enable scripts to be run. Try using the command Set-ExecutionPolicy
-ExecutionPolicy Unrestricted to do this, which will require running in administrator
mode. To deactivate a virtual environment, simply use the command deactivate.

For Mac, you will need to use pip: pip install virtualenv. To create a virtual
environment, use virtualenv folder, where “folder” is the environment name. To acti-
vate the environment, run the script in the virtual environment’s bin folder using source
folder/bin/activate. To deactivate, use deactivate.

There’s nothing special about deleting a virtual environment; just delete the folder like
any other. For technical reasons which are explained in the link given earlier, if you want
to move an environment folder from one folder to another, you should delete the folder
and make a new one at the desired location instead of copying and pasting the folder. To
get a list of all the packages installed in a virtual environment (which you’ll need when
you make the new one), use pip freeze. By using pip freeze > requirements.txt,
this list will be saved to the file requirements.txt. You can use this file to reinstall
all the packages in the new environment with pip install -r requirements.txt when
you’ve activated the new environment.

11

https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html#how-venvs-work


Figure 14: Using virtual environments in the PowerShell terminal. First, environments
virtual1 and virtual2 are created. virtual1 is then activated by running the appro-
priate script. The (virtual1) at the start of a line indicates that this environment is
active. Next, pip is used to install the Numpy library in the virtual1 environment. A
Python script which uses Numpy is then run (note that the script itself is not in the
virtual1 environment), and the script runs successfully, printing the number e. The
deactivate command is then used to deactivate virtual1, and virtual2 is activated.
Since virtual2, doesn’t have Numpy installed, running the same script produces an error
in this environment.

There is another optional program which we will now briefly mention: Anaconda.
Anaconda is a Python distribution which provides some convenience over using Python
without it. It is designed to manage your various packages and environments. Be sure
to add it to the PATH environment variable, which should come up as an option during
installation. In each environment, you can have a set of apps, including but not limited to
a Python interpreter, Spyder, VS Code, as well as an interpreter for the “R” programming
language, commonly used for statistics. And each environment will of course have its own
packages. Note that to install packages with Anaconda, you will need to select the correct
“channel” to install the package; usually you can look this up on the package’s website.
Anaconda provides a graphical interface (Anaconda Navigator) and a terminal (Anaconda
Prompt), so you can use whichever you prefer to run programs within environments, install
packages, create/delete environments, etc. See this link for some terminal commands.
Anaconda is free, incidentally, so ensure that you don’t purchase one of the business
versions by mistake.

12

https://docs.conda.io/projects/conda/en/4.6.0/_downloads/52a95608c49671267e40c689e0bc00ca/conda-cheatsheet.pdf


Figure 15: Anaconda Navigator. TOP: Viewing applications installed in an environment.
BOTTOM: Viewing packages installed in an environment. From this screen, packages
can be installed and removed, and environments can be created and deleted.

Jupyter Notebook

Along with .py files, there’s another important type of file used for Python code:
.ipynb files. These files are used by the Jupyter Notebook program, among others, and
are useful for educational purposes. These files are divided into “cells,” each of which can
either contain Python code or regular text. Each cell containing code is run one at a time
when the user decides. The cells containing text, “Markdown cells,” are simply there for
the user to read; different font sizes can be used, along with bold, italics, URL links, etc.,
so reading ordinary (non-code) text is much easier than if it were written in a .py file.
Together, code cells and Markdown cells can be used for teaching something in Python
or for telling some kind of narrative interspersed with Python code. Of course, you don’t
have to use it like this; there’s nothing stopping you from using it to write and experiment

13



with code, although if you’ve written a program for others to use, it wouldn’t typically
be given in this format.

Figure 16: A .ipynb file run in Jupyter Notebook.

To select/highlight a code cell, click on the cell outside of the space for writing code.
Clicking inside this space will let you write/edit code in the cell. Ctrl+Enter while writing
inside or highlighting a code cell will run that cell’s code, as will clicking on the button
towards the left of the cell. Clicking anywhere on a Markdown cell will highlight the cell.
Double-clicking on it will allow you to edit the text. Ctrl+Enter will then render the text,
i.e. convert the text you’ve written in the cell to proper-looking text stylized (e.g., bold,
italics) as you’ve indicated.

You can use the up/down arrow keys to change which cell is highlighted. When any
type of cell is highlighted, but not when writing inside a cell, type ‘a’ to insert a new cell
above the currently highlighted cell; type ‘b’ to insert a new cell below. New cells will be
code cells by default. Press ‘d’ twice to delete a cell. To convert a code cell to a Markdown
cell, type ‘m’ while the cell is highlighted. To convert a Markdown cell to code, use ‘y’
instead. The text written in Markdown cells uses its own sort of code (“markup”) to add
bold, italics, bullet points, links, etc. You can view a cheatsheet for them here.

To install Jupyter Notebook, use pip install notebook. You can of course also
install using Anaconda instead of pip. To launch, run the command jupyter notebook.
The program itself should launch in your Internet browser.

14

https://www.ibm.com/docs/en/watson-studio-local/1.2.3?topic=notebooks-markdown-jupyter-cheatsheet


Figure 17: Jupyter Notebook running in a Chrome browser. From here, navigate through
folders to find the desired .ipynb file or create a new one in the present folder by clicking
the “New” drop-down menu near the top right.

Online editors and interpreters

In addition to all of this, there are some Python editors and interpreters which can be
used online. A common resource is Google Colab, which functions similarly to Jupyter
Notebook. Again, one can use .ipynb files to write and experiment with code, so Colab
can still be used even if you aren’t making a pedagogical document. At the time of writing,
I unfortunately have a tiny little Chromebook as my laptop, so I frequently use Colab,
which I can open as a tab in my browser rather than having to open other programs.
Other files (containing data, etc.) can be uploaded and downloaded to/from the Colab
environment for you to read from/write to with your Python code. Colab also has code
linting and other features similar to an IDE like Spyder or VSCode.

Figure 18: Google Colab running in a Chrome browser.

You need a Google account to use Colab, which you might already have for Gmail,
YouTube, Google Drive, etc. Colab is free, but of course the free plan is limited, since

15

https://colab.research.google.com/


all the computational work is done on a machine somewhere else in the world. (If you’re
curious about where this machine is running, type !curl ipinfo.io into a cell and run
it.) The free plan should be enough for most purposes. Note that if you go 90 minutes
without interacting with the site, your session will end and executing code will be halted.
This can be a problem if you’re doing machine learning—machine learning models can
take hours to train—and you want to run the training overnight. And, of course, it’s
Google, so you certainly shouldn’t expect your privacy to be respected.

There are other options, as well, which you can feel free to search online. Pytho-
nAnywhere and Replit are two options, both of which you can access with free accounts.
Usually, of course, these will be limited; you really ought to know how to install and work
with a code editor and interpreter on your own machine.

16


